Synthesis, Characterization, Crystal and Molecular Structure of 1,5-Dihydro-2H-cyclopenta[1,2-b:5,4-b']dipyridin-2-imine

by Akın Baysal^{*a}), Feyyaz Durap^a), Bahattin Gümgüm^a), Leyla T. Yıldırım^b)¹), Dinçer Ülkü^b)¹), Ayse Dilek Boğa^c), and Saim Özkar^c)

 ^a) Dicle University, Department of Chemistry, TR-21280 Diyarbakir (phone: +90-412-2488550; fax: +90-412-2488039; e-mail: akinb@dicle.edu.tr)
 ^b) Hacettepe University, Department of Engineering Physics, Beytepe, TR-06800 Ankara
 ^c) Middle East Technical University, Department of Chemistry, TR-06531 Ankara

The reaction of 1,5-dihydro-2*H*-cyclopenta[1,2-*b*:5,4-*b'*]dipyridin-2-one (**3**) with an alkylamine (butylamine, hexylamine or ethylenediamine) yields, quite unexpectedly and in the absence of catalyst, the novel compound 1,5-dihydro-2*H*-cyclopenta[1,2-*b*:5,4-*b'*]dipyridin-2-imine (**4**) as the sole, analytically pure, solid product, which was fully characterized. The structure of **4** was unequivocally solved by single-crystal X-ray-diffraction analysis. The compound crystallizes in a monoclinic cell (space group $P_{2_1/c}$), with two molecules in the asymmetric unit, held together by intermolecular H-bonds. Compound **4** could be interesting as a bi- or even tridentate ligand, and exhibits a strong fluorescence upon excitation at 310 nm. A mechanism, based on the observed C–N bond cleavage, is proposed.

Introduction. – 4,5-Diaza-9*H*-fluoren-9-one (daf; 1)²) has several distinct properties compared to 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). For example, there are clear distinctions between daf and bipy in terms of bonding and coordination to transition metals [1]. The N(1)–C(2)–C(2') angle in bipy has been reported to be 116° [2]. In the case of daf, this angle is enlarged to 126° due to the additional methylene bridge [3]. This distortion causes an increase in the 'bite angle' of daf (1) compared to bipy. The increased bite angle, in turn, leads to a reduction in the overlap between metal and ligand orbitals. As a result, daf (1) appears to be a weaker ligand than bipy (in spectrochemical series), which translates into a significant energy change in the ligand-field (LF) states [4]. Consequently, daf complexes are expected to exhibit spectroscopic properties different from those with bipy and phen ligands.

1) Authors responsible for X-ray crystal-structure analysis.

²) Systematic name: 5*H*-cyclopenta[1,2-*b*:5,4-*b*']dipyridin-5-one.

© 2007 Verlag Helvetica Chimica Acta AG, Zürich

1212

The chemistry of diazafluorenes has been rarely reported [3][4c] [5]. These compounds can be prepared from 1,10-phenanthroline. For example, permanganate oxidation of 1,10-phenanthroline yields two compounds [6], daf proper (1) and 1*H*-cyclopenta[1,2-*b*:5,4-*b'*]dipyridine-2,5-dione (2), besides 2,2'-bipyridine-3,3'-dicarboxylic acid, whereby 1 can be converted to 2 by oxidation. Compound 2 has two C=O groups that differ from each other. The C=O group in position 2 can be isomerized to its enolic form, with the involvement of the NH group, and in basic solution. The C=O group in position 5 cannot undergo any tautomerism because of the lack of a vicinal H-atom. This distinction provides an opportunity to reduce only one of the two C=O groups (the one in position 5) in basic solution. Indeed, in the presence of hydrazine as basic reducing agent, we were able to reduce compound 2 to the analogue 3, which, in turn, was converted to the title compound 4. Herein, we report the synthesis, purification, and characterization of the two new 4,5-diazafluorene derivatives 3 and 4.

Results and Discussion. – Using hydrazine as reducing agent [6], compound **2** was selectively reduced to 1,5-dihydro-2*H*-cyclopenta[1,2-*b*:5,4-*b'*]dipyridin-2-one (**3**). As expected, only the C=O group in position 5 was reduced by hydrazine. The fact that the C=O group in position 2 remained untouched is attributed to its conversion to an enolic OH group in basic solution (tautomerism). Compound **3** was isolated as an analytically pure, colorless solid, and characterized by IR, ¹H-, and ¹³C-NMR spectroscopy, as well as elemental analysis (see *Exper. Part*).

The reaction of **3** with an alkylamine is expected to afford the corresponding imine. However, when we tried to react **3** with ethylenediamine (=ethane-1,2-diamine) in EtOH to obtain the corresponding ethylene-bridged diimine, a different product was formed, *i.e.*, **4**. This compound crystallized in the reaction solution, forming red crystals suitable for structure determination by X-ray diffraction (see below).

The conversion of **3** to **4** was found to occur only in protic solvents such as EtOH. No reaction was observed in anhydrous THF or Et_2O . We also tested other amines such as ethylenediamine, butylamine, and hexylamine, but in all cases, compound **4** was isolated in yields of 70-80%, along with the formation of the corresponding alcohol (derived from the amine), as determined by gas chromatography (GC). A mechanism proposed for the unexpected conversion of **3** to **4** is proposed in the *Scheme*. Although various resonance structures are possible for compound **3**, for clarity, only one of them is explicitly drawn.

The molecular structure of **4** was unequivocally determined by single-crystal X-ray diffraction (*Fig. 1*; see also *Table 3* in the *Exper. Part*). The monoclinic unit cell of **4** contains two molecules of the formula $C_{11}H_9N_3$ in the asymmetric unit. Each molecule is planar, excluding the H-atoms of the CH₂ group. Two molecules are almost parallel to each other in the asymmetric unit. The dihedral angle between the planes of the two moieties is 7.64(5)°. The smallest distance between these two molecules is 4.304(4) Å (N(2)-H…H-C(6))^3). Selected bond lengths and angles are given in *Table 1*. It is worth to note that the imine bond distance (N(3)-C(10) 1.205(5) Å, N(3')-C(10') 1.199(5) Å)⁴) is considerably shorter than the distances of the other C–N bonds in the molecule.

Fig. 1. Solid-state structure of **4**. Displacement ellipsoids are shown at 50% probability. Arbitrary atom numbering.

As shown in *Fig. 2, a*, the molecules in the crystal are held together by intermolecular H-bonds between N-atoms, with six intermolecular H-bonds in the asymmetric unit cell (*Table 2*). The molecular packing in the crystal is square pyramidal, as shown in *Fig. 2, b*, as viewed along the diagonal of the a/b axes.

The spectroscopic data of **4** are in accord with the molecular structure determined by X-ray crystallography. Noteworthy is the observation of ¹H-NMR signals at δ (H) 11.12 and 1.68 due to the imine H-atom (C=N-H) and H-N(1), respectively. The presence of the imino group is also evident from the IR absorption band at 1663 cm⁻¹ (C=N stretching) and the ¹³C-NMR chemical shift for C(2) at δ (C) 163.83.

In *Fig. 3*, the UV/VIS and emission spectra of **4** in deoxygenated CH_2Cl_2 solution are shown. Since the absorptions occur in the blue region, the compound appears red, with a strong fluorescence upon excitation at 310 nm.

Conclusions. – The new diazafluorene-based imine **4** was prepared and characterized spectroscopically, by mass spectrometry, and by X-ray diffraction. The

³) Arbitrary atom numbering (see *Fig. 1*).

⁴⁾ Primed numbers refer to the second molecule in the unit cell.

N(1)-C(1)	1.332(5)	N(1')-C(1')	1.340(5)
N(1) - C(2)	1.345(5)	N(1') - C(2')	1.348(5)
N(2) - C(10)	1.390(5)	N(2') - C(10')	1.403(5)
N(2) - C(11)	1.358(5)	N(2') - C(11')	1.356(5)
N(2)-H	0.85(4)	N(2')-H')	0.78(4)
N(3) - C(10)	1.205(5)	N(3') - C(10')	1.199(5)
C(1) - C(5)	1.395(5)	C(1') - C(5')	1.400(5)
C(1) - C(11)	1.456(5)	C(1') - C(11')	1.465(5)
C(5) - C(6)	1.497(6)	C(5') - C(6')	1.503(6)
C(6) - C(7)	1.503(6)	C(6') - C(7')	1.503(6)
$C(6)-H_A$	0.97(4)	$C(6')-H_{A'}$	1.03(4)
$C(6)-H_B$	1.05(5)	$C(6')-H_{B}'$	0.97(4)
N(1)-C(1)-C(11)	126.8(4)	N(1')-C(1')-C(11')	127.6(4)
N(1)-C(2)-C(3)	124.2(4)	N(1')-C(2')-C(3')	124.1(4)
N(1)-C(1)-C(5)	125.7(4)	N(1')-C(1')-C(5')	125.1(4)
N(2)-C(11)-C(1)	128.9(4)	N(2')-C(11')-C(1')	128.0(4)
N(2)-C(11)-C(7)	121.5(4)	N(2')-C(11')-C(7')	121.7(4)
N(2)-C(10)-C(9)	114.0(4)	N(2')-C(10')-C(9')	112.6(4)
N(3)-C(10)-N(2)	121.4(4)	N(3')-C(10')-N(2')	121.1(4)
N(3)-C(10)-C(9)	124.6(4)	N(3')-C(10')-C(9')	126.3(4)
C(1)-N(1)-C(2)	114.5(4)	C(1')-N(1')-C(2')	114.4(4)
C(1) - C(5) - C(6)	110.3(4)	C(1')-C(5')-C(6')	109.9(4)
C(11) - N(2) - C(10)	123.1(4)	C(11')-N(2')-C(10')	123.4(4)
C(11) - C(7) - C(6)	110.2(4)	C(11') - C(7') - C(6')	109.4(4)
C(11) - C(7) - C(8)	119.0(4)	C(11')-C(7')-C(8')	118.7(4)
C(4) - C(5) - C(6)	131.1(4)	C(4') - C(5') - C(6')	131.3(4)
C(5) - C(6) - C(7)	102.3(3)	C(7')-C(6')-C(5')	103.2(4)
C(5)-C(1)-C(11)	107.5(3)	C(5')-C(1')-C(11')	107.3(4)
C(8) - C(7) - C(6)	130.7(4)	C(8')-C(7')-C(6')	131.9(4)
$H_A - C(6) - H_B$	111(3)	${ m H_{A}'}{-}{ m C(6')}{-}{ m H_{B}'}$	106(3)
N(2)-C(11)-C(1)-N(1)	1.1(6)	N(2')-C(11')-C(1')-N(1')	1.8(7)
C(1)-C(5)-C(6)-C(7)	1.8(5)	C(1')-C(5')-C(6')-C(7')	1.0(5)
C(11)-C(7)-C(6)-C(5)	-1.4(5)	C(11')-C(7')-C(6')-C(5')	-1.0(5)

Table 1. Selected Bond Lengths (in Å), and Bond Angles and Torsion Angles (in °). Arbitrary atom numbering (see Fig. 1).

compound possessed three N-atoms with lone pairs for coordination and, thus, may act as a novel bidentate (or even tridentate) ligand. The complexation properties of **4** towards different transition metals are currently under investigation and will be reported in due course.

Partial support from the *Turkish Academy of Sciences*, Dicle University (Project No. 02-FF-33) and Hacettepe University (Scientific Research Department, Project No. 04A602004) is gratefully acknowledged.

Experimental Part

General. All chemicals and solvents used for synthesis were commercially available, reagent grade, and used without further purification. 1H-Cyclopenta[1,2-b:5,4-b']dipyridine-2,5-dione (**2**) was prepared according to the literature [6] by either permanganate oxidation of 1,10-phenanthroline or manganate

Fig. 2. Packing diagram of 4 showing a) H-bonding and b) unit-cell geometry

Table 2. Selected Hydrogen-Bonding Parameters for 4. 'D' and 'A' refer to H-bond donor and acceptor, resp.

$N(2) - H \cdots N(1')^a$ 0.85(4)			
	2.40(4)	3.204(5)	160(3)
$N(2')-H'\cdots N(3)^{a})$ 0.78(4)	2.00(4)	2.743(5)	160(3)
$N(3)-H\cdots N(2')^{a}$ 0.86	2.02	2.743(5)	141
$N(3) - H \cdots N(3')^{a}$ 0.86	2.57	3.388(4)	160
$C(4') - H \cdots N(3')^{b}$ 0.93	2.61	3.389(5)	142
$C(8) - H \cdots N(3)^{c}$ 0.93	2.37	3.282(5)	167

oxidation of 4,5-diaza-9*H*-fluoren-9-one (1) in basic soln. Melting points are uncorrected. UV/VIS and Fluorescence spectra were recorded in CH_2Cl_2 soln. in 1-cm quartz cells. IR Spectra were recorded on an FT-IR spectrometer using KBr discs; in cm⁻¹. NMR Chemical shifts δ and coupling constants *J* are given in ppm rel. to Me₄Si, and in Hz, resp.

1,5-Dihydro-2H-cyclopenta[*1,2-b:5,4-b']dipyridin-2-one* (**3**). A soln. of **2** (1.00 g, 5.05 mmol) in hydrazine hydrate (30 ml) was heated at reflux for 8 h, and then left to cool down to r.t. Dist. H₂O (100 ml) was added, and the mixture was left overnight. The resulting light-yellow precipitate was filtered off, dried, and recrystallized from H₂O to afford pure **3**. Yield: 0.74 g (80%). M.p. 258–260°. IR (KBr): 1642 (C=O). ¹H-NMR (400 MHz, CD₂Cl₂)⁵): 8.56 (*d*, J = 4.9, H–C(8)); 7.78 (*d*, J = 7.4, H–C(6)); 7.56 (*d*, J = 9.2, H–C(4)); 7.21 (*dd*, J = 7.4, 4.9, H–C(7)); 6.51 (*d*, J = 9.2, H–C(3)); 3.58 (*s*, CH₂(5)). ¹³C-NMR (100 MHz, CD₂Cl₂): 163.26; 153.98; 148.60; 144.63; 138.39; 138.04; 132.54; 122.09; 121.62; 120.77; 32.06. Anal. calc. for C₁₁H₈N₂O: C 71.74, H 4.35, N 15.22; found: C 71.62, H 4.30, N 15.17.

*1,5-Dihydro-*2H-*cyclopenta*[*1,2-b:5,4-b']dipyridin-2-imine* (**4**). Compound **3** (0.25 g, 1.4 mmol) was added to a soln. of ethylenediamine (41 mg, 0.68 mmol) in EtOH (25 ml) at r.t. The mixture was heated at reflux for 4 h. Upon cooling the soln. down to r.t., **4** was obtained as red crystals. Yield: 0.19 g (76%).

⁵) Arbitrary atom numbering (see chemical formula).

Fig. 3. UV/VIS (---) and Fluorescence (-) spectra of **4** in deoxygenated CH_2Cl_2 soln. at ambient temperature

Table 3. Crystal and Refinement Data of 4

Formula	$(C_{11}H_8N_3)_2$
$M_{\rm r}$ [g/mol]	366.43
Crystal system, space group	Monoclinic, $P 2_1/c$
Unit cell dimensions [Å, °]:	a = 10.326(1)
	b = 9.716(1)
	c = 17.735(3)
	$\beta = 105.78(1)$
V [Å ³]	1712.2(4)
Ζ	4
$D_{\rm x} [{\rm g} { m cm}^{-3}]$	1.421
$\mu [\mathrm{mm}^{-1}]$	0.089
F(000)	768
Temperature [K]	293(2)
Radiation, wavelength [Å]	Mo <i>K</i> _α , 0.71073
θ Range [°]	2.39-26.29
Absorption correction	Psi-scan ($T_{\min} = 0.979, T_{\max} = 0.982$)
Data set	$-12 \le h \le 0, 0 \le k \le 12, -21 \le l \le 22$
Refinement on F^2	$w = 1/[\sigma^2 F_0^2 + (0.08322PP)^2 + 0.5936P]$
	$P = (F_0^2 + 2F_c^2)/3)$
Nref, Npar refined	3077, 277
$R[F^2 > 2\sigma(F^2)], wR(F^2)$	0.0639, 0.1954
$(\Delta/\sigma)_{\rm max}$	0.000
Goodness of fit	1.023
$\Delta ho_{ m min}, \Delta ho_{ m max}$ [e Å ⁻³]	-0.49, 0.33

 $\begin{array}{l} \text{M.p. } 265-266^{\circ}. \ \text{IR} \ (\text{KBr}): 1663 \ (\text{C=N}). \ ^{1}\text{H-NMR} \ (400 \ \text{MHz}, \text{CD}_{2}\text{Cl}_{2})^{5}): 11.12 \ (\text{br.} \ s, \text{C}(2)=\text{NH}); 8.58 \ (\text{d}, J=4.8, \ \text{H}-\text{C}(8)); 7.80 \ (d, J=7.6, \ \text{H}-\text{C}(6)); 7.58 \ (d, J=9.2, \ \text{H}-\text{C}(4)); 7.22 \ (dd, J=7.6, \ \text{4.8}, \ \text{H}-\text{C}(7)); 6.51 \ (d, J=9.2, \ \text{H}-\text{C}(3)); 3.60 \ (s, \ \text{CH}_{2}(5)); 1.68 \ (\text{br.} \ s, \ \text{H}-\text{N}(1)). \ ^{13}\text{C}-\text{NMR} \ (100 \ \text{MHz}, \ \text{CD}_{2}\text{Cl}_{2})^{5}): 163.83; \end{array}$

154.01; 148.62; 144.60; 138.42; 138.16; 132.56; 122.14; 121.59; 120.74; 32.06. Anal. calc. for $C_{11}H_9N_3$: C 72.13, H 4.92, N 22.95; found: C 72.06, H 4.41, N 22.84.

*X-Ray Crystal-Structure Analysis*⁶). A shapeless, red crystal of **4** ($0.3 \times 0.2 \times 0.2 \text{ mm}$) was used. X-Ray diffraction data were collected on an *Enraf-Nonius CAD4* diffractometer operated in the $\omega/2\theta$ scan mode, using graphite-monochromated MoK_a radiation at r.t. The lattice parameters and their estimated standard deviations were determined from least-squares refinement of 17 centered reflections in the range of $8.69 \le \theta \le 18.00^{\circ}$ by using CAD4 Express [7]. During data collection, three standard reflections were periodically measured every 2 h, which showed no significant intensity variation. A total of 3,243 reflections were collected in the range $2.39 \le \theta \le 26.29^{\circ}$, of which 3,077 independent reflections were used for the structure determination (*Table 3*). Data reduction was carried out with XCAD4 [8]. The structure was solved by direct methods, and refined with the programs SHELXS97 and SHELXL97 [9], resp., in the WinGX software package [10]. A full-matrix least-squares refinement on F^2 converged at R = 0.053. Atomic scattering factors were taken from the *International Tables for X-ray Crystallography* [11]. The H-atoms of the CH₂ groups and also on N(2) and N(5) were taken from a difference *Fourier* map and refined, while the other H-atoms were placed with $U_{iso}(H) = 1.2 U_{eq}(C)$. For all non-H-atoms, anisotropic displacement parameters were refined. *Fig. 1* was drawn with ORTEP [12], and H-bonds and the molecular packing geometry were calculated with PLATON [13].

REFERENCES

- [1] W-Y. Wong, Coord. Chem. Rev. 2005, 249, 971.
- [2] L. L. Merritt, E. D. Schroeder, Acta Crystallogr. 1956, 9, 801.
- [3] M. Riklin, A. von Zelewsky, A. Bashall, M. McPartin, A. Baysal, J. A. Connor, J. D. Wallis, *Helv. Chim. Acta* 1999, 82, 1666.
- [4] a) D. E. Marx, A. J. Lees, *Inorg. Chem.* **1987**, *26*, 620; b) R. A. Klein, P. Witte, R. van Belzen, J. Fraanje, K. Goubitz, M. Numan, H. Schenk, J. M. Ernsting, C. J. Elsevier, *Eur. J. Inorg. Chem.* **1998**, 319; c) L. J. Henderson Jr., F. R. Fronczek, W. R. Cherry, *J. Am. Chem. Soc.* **1984**, *106*, 5876.
- [5] J. Wu, J. R. Kincaid, J. Raman Spectrosc. 2004, 35, 1001; A. Baysal, J. A. Connor, J. D. Wallis, J. Coord. Chem. 2001, 53, 347; J-P. Mazaleyrat, M. Wakselman, F. Formaggio, M. Crisma, C. Toniolo, Tetrahedron Lett. 1999, 40, 6245.
- [6] P. N. W. Baxter, J. A. Connor, J. D. Wallis, D. C. Povey, A. K. Powell, J. Chem. Soc., Perkin Trans. 1 1992, 1601.
- [7] CAD-4 Express Software, Version 1.1, Enraf-Nonius, Delft, The Netherlands, 1993.
- [8] K. Harms, S.Wocadlo, XCAD-4, Program for Processing CAD-4 Diffractometer Data, University of Marburg, Germany, 1995.
- [9] G. M. Sheldrick, SHELXS97 and SHELXL97, Program for Crystal Structure Solution and Refinement, University of Göttingen, Germany, 1997.
- [10] L. J. Farrugia, WinGX, Program for Crystallography Package, J. Appl. Crystallogr. 1999, 32, 837.
- [11] International Tables for Crystallography, Ed. A. J. C. Wilson, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992, Volume C.
- [12] L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.
- [13] A. L. Spek, PLATON2000, University of Utrecht, The Netherlands, 2000; A. L. Spek, Acta Crystallogr. 1990, A46, C34.

Received February 14, 2007

⁶) The crystallographic data of **4** have been deposited with the *Cambridge Crystallographic Data Centre* as supplementary publication number CCDC-623143. Copies of the data can be obtained, free of charge, at http://www.ccdc.cam.ac.uk/data_request/cif.